Novas linhas de luz do Sirius ampliam as possibilidades para ciência brasileira
Texto: José Tadeu Arantes | Agência FAPESP
Com 530 metros de circunferência, o Sirius, fonte de luz síncrotron de quarta geração, é a maior e a mais importante infraestrutura científica brasileira. É também um dos três únicos equipamentos de sua classe já existentes no mundo. Os outros dois localizam-se na Suécia e na França, respectivamente, enquanto países muito avançados em pesquisa, como a China, ainda estão construindo os seus. Emitida em diferentes bandas do espectro eletromagnético, do infravermelho ao raio X, a luz do Sirius penetra os mais variados materiais, possibilitando estudar sua estrutura e composição.Para falar sobre esse equipamento, cuja gama de aplicações, já em curso ou potenciais, é enorme, a FAPESP trouxe ao seu auditório o físico , diretor do Laboratório Nacional de Luz Síncrotron (LNLS), onde o Sirius está instalado. A “4ª Conferência FAPESP 2023: Sirius: uma nova era para a ciência brasileira com um síncrotron quarta geração”, apresentada na sexta-feira (25/10), pode ser assistida pelo da Agência FAPESP no YouTube.
Westfahl Júnior anunciou que está aberta a terceira chamada regular de propostas de pesquisa para as dez primeiras estações experimentais de Sirius. Pesquisadores brasileiros, da América Latina e Caribe podem até 6 de setembro. Os que tiverem propostas aprovadas, podem solicitar auxílio financeiro para a utilização das instalações e para a viagem a Campinas.
Um diferencial importante da pesquisa realizada nas linhas de luz síncrotron é que ela possibilita experimentos in situ, com a visualização das modificações produzidas na estrutura dos materiais quando estes são submetidos a diferentes parâmetros de temperatura, pressão, tensão mecânica, campos elétricos ou magnéticos, ambientes químicos diversificados etc.
Novas linhas de luz
As quatro novas linhas de luz que passam a receber propostas de pesquisa nesta chamada ampliam ainda mais as possibilidades experimentais do Sirius. De acordo Westfahl Júnior, outros tipos de experimentos poderão ser realizados, complementares aos experimentos atuais: “Na linha de luz Cedro, abriremos novas possibilidades de experimento para pesquisa em biofísica, enquanto na linha Sabiá teremos mais possibilidades para desvendar mecanismos que conferem propriedades magnéticas aos materiais. Já a Mogno, linha de luz de maior energia do Sirius, abrirá capacidades sem precedentes em tomografia de raios X, beneficiando diversas áreas do conhecimento. E a linha Paineira ampliará a nossa capacidade de cristalografia e abrirá possibilidades para mineralogia de solos e para investigação da estrutura atômica de catalisadores em tempo real”.Acelerador de partículas
O Sirius é, fundamentalmente, um acelerador de partículas. E Westfahl Júnior explicou a diferença entre ele e outros aceleradores, como o gigantesco Large Hadron Collider (LHC), instalado na fronteira franco-suíça. No LHC, dois feixes de hádrons (principalmente prótons) deslocam-se pelo equipamento em sentidos contrários. E, depois de acelerados por campos magnéticos até patamares altíssimos de energia, são levados a colidir um com o outro. A cascata de partículas formadas informa sobre as configurações da matéria que podem existir nesses patamares de energia, validando ou aprimorando esquemas teóricos como o Modelo Padrão e permitindo reconstituir situações que teriam ocorrido no universo primordial. Já o acelerador síncrotron é outra coisa. “O objetivo dele não é fazer colisão. Mas acelerar elétrons praticamente até a velocidade da luz para produzir radiação eletromagnética. Quando acelerados, os elétrons emitem fótons, que são guiados pelo instrumento até as chamadas linhas de luz”, disse. A radiação é filtrada em diferentes comprimentos de onda e levada a incidir sobre amostras de interesse. Dependendo do comprimento de onda e da amostra, a radiação pode ser absorvida ou não pelo material, desvelando a sua estrutura e composição. “A luz visível tem energia da ordem de 2 elétron-volts. Mas o Sirius produz radiação que vai de valores muito menores do que um elétron-volt até muito maiores do que milhares de elétron-volts”, informou o pesquisador. As baixas energias, na banda do infravermelho, possibilitam identificar as “assinaturas” das ligações químicas. Energias pouco superiores à da luz visível permitem investigar como os elétrons estão arranjados nos materiais. E energias muito maiores do que milhares de elétron-volts, principalmente na faixa dos raios X, abrem janelas para uma grande variedade de experimentos. Toda a tecnologia é mobilizada para condensar os elétrons e produzir os menores feixes possíveis, de forma a viabilizar o mapeamento da matéria em escala nanométrica. “Nos aceleradores síncrotron de quarta geração, o tamanho do feixe é bem menor do que o das gerações anteriores. E, nele, a fração coerente é bem maior. Explorar essa coerência é o que nos dá tantas possibilidades novas. Outro aspecto importante é que não basta produzir um feixe de elétrons pequeno; é preciso também que esse feixe seja estável, para poder circular pelo acelerador o dia todo, a semana inteira, não variando mais do que algumas centenas de nanômetros”, destacou Westfahl Júnior.Um exemplo de cooperação
O conjunto da exposição de Westfahl Júnior e a sessão de perguntas e respostas forneceram uma gama extremamente variada de informações sobre o Sirius, da física da radiação síncrotron ao perfil dos pesquisadores e técnicos engajados no equipamento, dos valores do financiamento às condições para a submissão de propostas de utilização, da abertura para equipes estrangeiras ao capital diplomático que essa infraestrutura de pesquisa proporciona ao país.A conferência foi aberta pelo diretor-presidente da FAPESP, , que destacou o papel dos pioneiros na construção do primeiro acelerador síncrotron do país e a contribuição da indústria nacional na fabricação dos componentes. E foi moderada por , da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP). Presente na plateia, o presidente da FAPESP, , atribuiu o êxito do projeto a um exemplo raro de cooperação entre a comunidade científica, as empresas privadas e o governo.
Informações muito detalhadas sobre o Sirius podem ser obtidas no do CNPEM.
Mais informações sobre este e outros eventos da série “Conferências FAPESP 2023” estão disponíveis em: .