O detector de matéria escura mais sensível já feito trouxe seus primeiros resultados
• Uma impressionante nova teoria conecta buracos negros, matéria escura e ondas gravitacionais
• Trabalhar neste laboratório deve ser como viver em um filme de ficção científica
Essa é há muito tempo a maneira como os físicos têm lentamente descartado as possíveis propriedades que as partículas de matéria escura tenham tido. XENON1T significa XÉNON 1 tonelada, porque contém uma tonelada (bom, na verdade um pouco mais que três toneladas) de xenônio líquido. Costumava-se chamar de XENON100, e, antes disso, XENON10. Detectores concorrentes estão procurando por partículas de matéria escura de maneiras semelhantes — o experimento (LUX) sua busca por matéria escura sem uma partícula sequer para mostrar no verão passado e, atualmente, está se aprimorando para “LZ”. Tem também o (mais uma vez, uma cuba de xenônio) e outros que usam outro gás nobre, o argônio. Esses gases nobres são usados porque eles liberam luz e elétrons quando são esmagados, de acordo com um na Symmetry Magazine.
O tanque d’água do XENON1T (Imagem: the XENON collaboration)
O pessoal do experimento LUX/LZ e outros de fora da comunidade da física têm prestado bastante atenção na concorrência. O XENON1T é o primeiro a sair na mais nova iteração desses experimentos. “Essa é a próxima geração deixando a infância, de certa forma”, disse Bob Jacobsen, físico da Universidade da Califórnia em Berkeley e que trabalha no LUX e no LZ, em entrevista ao Gizmodo. “Eles não estão apenas mostrando que os tubos fotomultiplicadores funcionam, mas, sim, fazendo física de verdade.” E, embora não fale em nome do LZ, Jacbson disse que a pressão está, definitivamente, acontecendo agora. “Todos estão focados em construir o próximo experimento. É difícil vencer alguém cujo detector é três, quatro vezes maior que o seu.” Outros acharam que os novos resultados não são um salto tão grande. Kathryn Zurek, física teórica do Lawrence Berkeley National Laboratory, na Califórnia, me disse que os resultados do XENON1T superaram apenas por muito pouco os do LUX no ano passado, que descartaram partículas de matéria escura dentro de um certo alcance de massa. Ela apontou que esses detectores de matérias negras de baixa interação estão agora em “modo de produção”, trabalhando lentamente em busca de indícios de partículas. Mas, como com os experimentos “concorrentes” ATLAS e CMS, no Grande Colisor de Hádrons, que descobriram em conjunto o bóson de Higgs, é importante ter uma verificação independente no caso de uma descoberta. “Precisamos de dois experimentos”, disse Ni. “Se o XENON1T descobre sinais de matéria escura, então o LZ pode confirmar isso.”O detector XENON1T (Imagem: the XENON collaboration)
Conforme esses experimentos crescem, as pessoas estão começando a sentir a pressão do que pode acontecer se fracassarmos em descobrir matéria escura. “Não dá para fazer isso para sempre”, disse Tunnell. “Você se pergunta se talvez a matéria escura é diferente do que o que você espera que seja.” Em outras palavras, não uma partícula de interação fraca. Os cientistas ainda não estão nesse nível, disse Baudis, e eles estão trabalhando para construir o detector de matéria escura definitivo, chamado . Mas uma vez que esses experimentos fiquem sensíveis o bastante que partículas minúsculas emanando do sol e do espaço sideral chamadas “neutrinos” comecem a aparecer no detector, talvez então seja a hora de jogar a toalha. “Se não tivermos visto nenhuma matéria escura até lá, então haveria neutrinos demais”, ela disse. Não é um atalho, disse Zurek, mas seria necessário muito mais xenônio para buscar uma simples interação de partícula de matéria escura em um mar de neutrinos. “Então a pergunta que será feita após a construção do LZ será: vamos construir outra geração de experimentos?”, questionou Zurek. “Agora, estamos falando sobre quantidades de xenônio conseguindo ser uma fração não-trivial do fornecimento do mundo.” Nesse caso, os cientistas precisariam caçar matéria escura de . Isso é algo que os cientistas já estão discutindo, segundo Zurek. Mas ainda não estamos lá. As atuais cubas de xenônio estão caçando naquela “área boa” onde a matéria escura de fraca interação pode se comunicar com nossos experimentos via partículas que conhecemos e podemos detectar. Então, por enquanto, a busca continua. “Nós simplesmente não temos como saber até procurar”, disse Baudis.Imagem do topo: Christopher Tunnell/the XENON collaboration
[]