Cientistas identificam colisão de estrelas de nêutrons que pode ter criado o plutônio de nosso sistema solar
Os cientistas agora acham que essas fusões binárias de estrelas de nêutrons são uma fonte importante de elementos mais pesados que o ferro no universo. Esses elementos são raros, mas também são alguns dos mais importantes para nós, seres humanos. Usando medições do que resta desses elementos em meteoritos antigos, um par de pesquisadores trabalhou para voltar no tempo e localizar a fusão de estrelas de nêutrons que produziu algumas delas.
“Descobrimos essa fusão de estrelas binárias há dois anos e ela estava próxima da Via Láctea — muito mais próxima do que prevíamos”, disse ao Gizmodo Imre Bartos, principal autor do estudo e professor assistente da Universidade da Flórida. “Perguntamos se algo ainda mais próximo (…) poderia ter um impacto significativo no aspecto atual do sistema solar.”
Elementos mais pesados que o ferro se formam em parte graças ao “processo r”, em que um evento de alta energia faz com que núcleos atômicos de sementes suguem rapidamente muitos nêutrons. Quando o evento desacelera, alguns desses nêutrons decaem radioativamente em prótons. Explosões estelares chamadas de supernovas e fusões de estrelas de nêutrons foram ambas consideradas fontes potenciais dos elementos do processo r.
Primeiro, os pesquisadores se propuseram a ver se fusões de estrelas de nêutrons ou supernovas produziam os elementos em que estavam interessados, principalmente cúrio e plutônio. Supernovas, eventos em que estrelas explodem, acontecem com relativa frequência, enquanto estrelas de nêutrons só se fundem talvez algumas vezes a cada milhão de anos em nossa galáxia, de acordo com o artigo .A conclusão é que um único evento, provavelmente uma fusão de estrelas de nêutrons a mil anos-luz de distância, produziu a maior parte do cúrio e talvez um terço do plutônio do sistema solar. Isso equivale a apenas uma fração de um por cento da quantidade total de elementos do processo r no sistema solar, mas “houve muitas fusões de estrelas de nêutrons na história da Via Láctea”, disse Bartos.
É uma pesquisa bastante interessante. “[Esses elementos] são uma pequena fração de 1% do universo, mas são muito úteis para nós de muitas maneiras”, disse David Helfand, astrônomo e professor da Universidade Columbia, ao Gizmodo. “Só de saber de onde eles vieram nos ajuda a nos sentir mais à vontade no universo.” É importante notar que esses resultados são baseados na modelagem de medidas indiretas, e nosso conhecimento sobre as colisões de estrelas de nêutrons e o processo r vem de apenas uma observação experimental. Embora improvável, talvez outro tipo de evento de alta energia ainda mais caótico tenha produzido esses elementos. Bartos disse ao Gizmodo que o próximo passo é medir mais elementos com abundância desconhecida, criar melhores simulações e, é claro, observar mais colisões de estrelas de nêutrons.Felizmente, os observatórios de ondas gravitacionais LIGO e Virgo foram atualizados e já começaram a detectar sinais de colisão de buracos negros e talvez até de algumas estrelas de nêutrons.
Bartos estava animado sobre como esses resultados combinam tantos campos diferentes, da geociência à astrofísica e à química. “Ao conectar esse campo neste trabalho específico, esperamos começar um esforço maior para usar essas informações em uníssono.”