Cepa de levedura criada na USP produz etanol de segunda geração a partir de açúcares complexos
Texto: Julia Moióli | Agência FAPESP
Uma nova cepa geneticamente modificada da levedura Saccharomyces cerevisiae demonstrou, em condições semelhantes às industriais, potencial para otimizar em até 60% a produção de etanol de segunda geração (2G) no país sem a necessidade de aumentar a área plantada de cana-de-açúcar. Segundo resultados divulgados na revista Scientific Reports, a inovação poderá também reduzir parte dos custos da indústria.
O estudo foi conduzido por pesquisadores da Universidade de São Paulo (USP) e colaboradores, com apoio da FAPESP (projetos , , , , , , , , e ).
A plantação de cana-de-açúcar e seu processamento agroindustrial geram todos os anos milhões de toneladas de biomassa lignocelulósica, resíduo de matéria orgânica composto de lignina, celulose e hemicelulose. Atualmente destinada apenas à queima para a geração de energia elétrica, essa biomassa também pode servir de matéria-prima para a fabricação do etanol 2G, considerado um dos combustíveis com menor pegada de carbono do mundo justamente por utilizar resíduos do processo de fabricação do etanol comum e do açúcar.Há, no entanto, um obstáculo para o uso da biomassa lignocelulósica: por se tratar de um açúcar complexo, ela não é metabolizada naturalmente pelo microrganismo utilizado na produção tradicional de etanol, a levedura Saccharomyces cerevisiae. Durante a fabricação do combustível 2G, é necessário realizar uma etapa extra de pré-tratamento, com altas temperaturas e altas pressões, e uma etapa de hidrólise, com enzimas que quebram os açúcares e os tornam disponíveis para a fermentação. Somente então é possível a conversão em etanol.
No estudo recenetemente publicado, os pesquisadores lançaram mão de sequências gênicas de enzimas encontradas em outros fungos para construir uma nova versão da levedura, capaz de transportar e degradar internamente componentes da hemicelulose (oligossacarídeos) que compõem a biomassa lignocelulósica. Os genes foram, então, inseridos em S. cerevisiae, dando origem a uma nova cepa.
Desenvolvida em parceria com pesquisadores das universidades Estadual de Campinas (Unicamp), de Illinois (Estados Unidos) e de Bath (Reino Unido) e testada em um meio próximo ao real (industrial), a nova levedura carrega ainda outras modificações importantes. Por meio da substituição de determinados genes, pode metabolizar ácido acético, produto da digestão da hemicelulose normalmente não consumido pelas leveduras, tóxico e que compromete o processo de fermentação.“Atuamos com engenharia metabólica para dar à levedura a capacidade de ser autossuficiente em processos que ela não seria naturalmente”, explica , pesquisadora do Instituto de Química (IQ) da USP e primeira autora do estudo.
Econômica e ambientalmente correta
O destaque da nova levedura é sua capacidade de aumentar a produção do etanol de segunda geração sem demandar a ampliação da área plantada de cana-de-açúcar. Além disso, pelo fato de ser capaz de metabolizar açúcares complexos, a biomassa não precisa passar por tratamentos químicos severos – esse tipo de processo costuma demandar condições específicas de temperatura e pressão, consumindo mais energia e gerando uma quantidade considerável de resíduos agressivos ao meio ambiente.Outra vantagem é a redução de custos para a indústria. “Normalmente, os fabricantes precisam comprar enzimas que digerem açúcares complexos, o que encarece consideravelmente o processo – é um custo extra que não existe na produção do combustível tradicional”, explica , professor do Departamento de Engenharia Química da Escola Politécnica (Poli) da USP e coordenador do estudo.
“Além disso, condições mais amenas de pré-tratamento levam à diminuição da produção de certos compostos tóxicos, o que permite uma fermentação melhor do etanol de segunda geração e contribui ainda mais para o rendimento”, completa Basso. De acordo com os pesquisadores, trabalhos futuros podem explorar ainda o potencial dessa nova levedura para controlar bactérias contaminantes, geralmente bactérias láticas, que comprometem o rendimento, pois esses açúcares complexos não são metabolizados por tais contaminantes. Isso reduziria o peso ambiental do uso de antibiótico na indústria.O artigo Metabolic engineering of Saccharomyces cerevisiae for second-generation ethanol production from xylo-oligosaccharides and acetate pode ser lido em: .